WHEN IT COMES to size and spectacle, the peak of the Space Age passed in 1973, with the final flight of the Saturn V rocket that had carried the Apollo astronauts to the moon. Taller than the Statue of Liberty, the Saturn V could lug 140 tonnes into orbit. Its first flight, in 1967, provoked Walter Cronkite, an American news anchor reporting far from the pad, to exclaim: “My God, our building’s shaking here!” as ceiling tiles fell around him. Half a century later, nothing as powerful has reached orbit since (see chart 1).
Not far from Boca Chica, a Texan hamlet a couple of miles from the Mexican border, SpaceX, a rocketry firm founded by Elon Musk, is developing a machine that it hopes will change that. Built from gleaming stainless steel, with its nose adorned with fins and ten metres taller than even the Saturn V, Starship looks like something from the cover of a 1950s pulp science-fiction magazine. Its planned payload of up to 150 tonnes means that five Starship flights could put more stuff into space than the rest of the world managed with 135 rocket launches in 2021. Its upper stage contains more pressurised volume than the International Space Station, which took a decade, dozens of launches and perhaps $100bn to assemble.
But it is not just the size that matters. When a Saturn V took off to send men to the Moon, the only bit of the 2,800 tonnes of hardware which came back was a cramped five-tonne capsule with three men inside. Each new mission meant a new Saturn V. With Starship, the idea is that all the hardware will come back: the massive booster stage almost immediately, the second, orbital stage after fulfilling whatever mission it had been sent on.
At a press event on February 10th to show off an assembled rocket Mr Musk reiterated his reasons for founding SpaceX: to buy humanity an insurance policy against existential risks by establishing a colony on Mars. Starship is designed to transport the million tonnes of supplies he thinks is needed for that job—roughly 100 times more mass than has been launched since the start of the Space Age. To that end, it is designed to be not only the biggest rocket ever built, but also the cheapest. Existing rockets cost tens to hundreds of millions of dollars per launch (the Saturn V may have cost over $1bn in today’s money). Despite Starship’s size, SpaceX hopes to cut that to the low millions.
Mars colonies, if they ever come, remain a long way off. But Starship’s unprecedented combination of size and frugality could upend the economics of the space business closer to Earth, too. An industry used to shaving grams of mass and cramming complicated payloads into small cargo bays will see those restrictions lifted. Some scientists are already imagining extravagant space missions that would make full use of the rocket’s huge capacity. NASA intends to use it to land astronauts on the Moon; America’s soldiers are eyeing it up, too. And Starship is vital to the future of SpaceX itself, which was valued recently at more than $100bn (see chart 2).
But first the rocket needs to fly. A series of test flights of Starship’s upper stage (which, in isolation, is rather confusingly also called “Starship”) have ended in crash-landings and explosions. A successful flight came on May 5th last year, when an upper stage flew 10km into the air before landing safely back on its pad. A full-fledged orbital test of the two-stage form of the rocket, with one Starship upper stage sitting atop a Super Heavy booster, had been due in January.
That orbital flight, though, needs approval from regulators, who were deluged with thousands of public comments. Officials have promised a decision within weeks. But broader environmental issues could yet force the firm to suspend work at Boca Chica entirely. An internal memo leaked last year revealed serious problems with the Raptor engines intended to power Starship. In his press conference, Mr Musk left himself a fair amount of wriggle room. An orbital flight, he said, might come in “a couple of months”—though it could also slip to the end of the year.
Zero gravitas
Something like Starship has been in development at SpaceX for over a decade, under names such as MCT (Mars Colonial Transporter), ITS (Interplanetary Transport System), and BFR (Big Fucking Rocket). Earlier versions were huger still: the ITS had a 300-tonne payload at one point. But all versions had one thing in common: they are designed to be entirely reusable.
SpaceX already flies partially reusable rockets: the first stages of its Falcon 9 machines fly back to Earth under their own power. Once refurbished and refuelled, they can fly again, spreading their construction co