The new study demonstrated the first instance of a quantum algorithm being distributed across multiple processors. Image credit: Oxford University Physics and Helen Hainzer.
In a milestone that brings quantum computing tangibly closer to large-scale practical use, scientists at Oxford University’s Department of Physics have demonstrated the first instance of distributed quantum computing. Using a photonic network interface, they successfully linked two separate quantum processors to form a single, fully connected quantum computer, paving the way to tackling computational challenges previously out of reach. The results have been published in Nature.
The breakthrough addresses quantum’s ‘scalability problem’: a quantum computer powerful enough to be industry-disrupting would have to be capable of processing millions of qubits. Packing all these processors in a single device, however, would require a machine of an immense size. In this new approach, small quantum devices are linked together, enabling computations to be distributed across the network. In theory, there is no limit to the number of processors that could be in the network.
By interconnecting the modules using photonic links, our system gains valuable flexibility, allowing modules to be upgraded or swapped out without disrupting the entire architecture.
Dougal Main, Department of Physics, University of Oxford
The scalable architecture is based on modules which each contain only a small number of trapped-ion qubits (atomic-scale carriers of quantum information). These are linked together using optical fibres, and use light (photons) rather than electrical signals to transmit data betw