References
-
National Prevalence Survey of Age Discrimination in the Workplace (Australian Human Rights Commission, 2015).
-
Erber, J. T. & Long, B. A. Perceptions of forgetful and slow employees: does age matter? J. Gerontol. B 61, 333–339 (2006).
-
Salthouse, T. A. Selective review of cognitive aging. J. Int. Neuropsychol. Soc. 16, 754–760 (2010).
-
Jensen, A. R. Clocking the Mind: Mental Chronometry and Individual Differences (Elsevier, 2006).
-
Salthouse, T. A. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 103, 403–428 (1996).
-
Salthouse, T. A. What and when of cognitive aging. Curr. Dir. Psychol. Sci. 13, 140–144 (2004).
-
Hartshorne, J. K. & Germine, L. T. When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychol. Sci. 26, 433–443 (2015).
-
Schaie, K. W. What can we learn from longitudinal studies of adult development? Res. Hum. Dev. 2, 133–158 (2005).
-
Zimprich, D. & Martin, M. Can longitudinal changes in processing speed explain longitudinal age changes in fluid intelligence? Psychol. Aging 17, 690–695 (2002).
-
Oschwald, J. et al. Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change. Rev. Neurosci. 31, 1–57 (2019).
-
Frischkorn, G. T. & Schubert, A.-L. Cognitive models in intelligence research: advantages and recommendations for their application. J. Intell. 6, 34 (2018).
-
Pachella, R. G. The Interpretation of Reaction Time in Information Processing Research Technical Report (Michigan Univ. Ann Arbor Human Performance Center, 1973).
-
Schubert, A.-L. & Frischkorn, G. T. Neurocognitive psychometrics of intelligence: how measurement advancements unveiled the role of mental speed in intelligence differences. Curr. Dir. Psychol. Sci. 29, 140–146 (2020).
-
Ratcliff, R., Thapar, A. & McKoon, G. Individual differences, aging, and IQ in two-choice tasks. Cogn. Psychol. 60, 127–157 (2010).
-
Lerche, V. et al. Diffusion modeling and intelligence: drift rates show both domain-general and domain-specific relations with intelligence. J. Exp. Psychol. Gen. 149, 2207–2249 (2020).
-
Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).
-
Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).
-
Ratcliff, R. & Rouder, J. N. Modeling response times for two-choice decisions. Psychol. Sci. 9, 347–356 (1998).
-
Voss, A., Nagler, M. & Lerche, V. Diffusion models in experimental psychology: a practical introduction. Exp. Psychol. 60, 385–402 (2013).
-
Fudenberg, D., Newey, W., Strack, P. & Strzalecki, T. Testing the drift–diffusion model. Proc. Natl Acad. Sci. USA 117, 33141–33148 (2020).
-
Lerche, V. & Voss, A. Experimental validation of the diffusion model based on a slow response time paradigm. Psychol. Res. 83, 1194–1209 (2019).
-
Voss, A., Rothermund, K. & Voss, J. Interpreting the parameters of the diffusion model: an empirical validation. Mem. Cogn. 32, 1206–1220 (2004).
-
Arnold, N. R., Bröder, A. & Bayen, U. J. Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods. Psychol. Res. 79, 882–898 (2015).
-
McGovern, D. P., Hayes, A., Kelly, S. P. & O’Connell, R. G. Reconciling age-related changes in behavioural and neural indices of human perceptual decision-making. Nat. Hum. Behav. 2, 955–966 (2018).
-
Ratcliff, R., Hasegawa, Y. T., Hasegawa, R. P., Smith, P. L. & Segraves, M. A. Dual diffusion model for single-cell recording data from the superior colliculus in a brightness-discrimination task. J. Neurophysiol. 97, 1756–1774 (2007).
-
Kühn, S. et al. Brain areas consistently linked to individual differences in perceptual decision-making in younger as well as older adults before and after training. J. Cogn. Neurosci. 23, 2147–2158 (2011).
-
Ball, B. H. & Aschenbrenner, A. J. The importance of age-related differences in prospective memory: evidence from diffusion model analyses. Psychon. Bull. Rev. 25, 1114–1122 (2018).
-
Dully, J., McGovern, D. P. & O’Connell, R. G. The impact of natural aging on computational and neural indices of perceptual decision making: a review. Behav. Brain Res. 355, 48–55 (2018).
-
Janczyk, M., Mittelstädt, P. & Wienrich’s, C. Parallel dual-task processing and task-shielding in older and younger adults: behavioral and diffusion model results. Exp. Aging Res. 44, 95–116 (2018).
-
McKoon, G. & Ratcliff, R. Aging and IQ effects on associative recognition and priming in item recognition. J. Mem. Lang. 66, 416–437 (2012).
-
Ratcliff, R., Thapar, A. & McKoon, G. The effects of aging on reaction time in a signal detection task. Psychol. Aging 16, 323–341 (2001).
-
Ratcliff, R., Gomez, P. & McKoon, G. A diffusion model account of the lexical decision task. Psychol. Rev. 111, 159–182 (2004).
-
Thapar, A., Ratcliff, R. & McKoon, G. A diffusion model analysis of the effects of aging on letter discrimination. Psychol. Aging 18, 415–429 (2003).
-
Spaniol, J., Madden, D. J. & Voss, A. A diffusion model analysis of adult age differences in episodic and semantic long-term memory retrieval. J. Exp. Psychol. Learn. Mem. Cogn. 32, 101–117 (2006).
-
Spaniol, J., Voss, A., Bowen, H. J. & Grady, C. L. Motivational incentives modulate age differences in visual perception. Psychol. Aging 26, 932–939 (2011).
-
von Krause, M., Lerche, V., Schubert, A.-L. & Voss, A. Do non-decision times mediate the association between age and intelligence across different content and process domains? J. Intell. 8, 33 (2020).
-
Schubert, A.-L., Hagemann, D., Löffler, C. & Frischkorn, G. T. Disentangling the effects of processing speed on the association between age differences and fluid intelligence. J. Intell. 8, 1 (2020).
-
McKoon, G. & Ratcliff, R. Aging and predicting inferences: a diffusion model analysis. J. Mem. Lang. 68, 240–254 (2013).
-
Theisen, M., Lerche, V., von Krause, M. & Voss, A. Age differences in diffusion model parameters: a meta-analysis. Psychol. Res. 85, 2012–2021 (2020).
-
Ratcliff, R. & Childers, R. Individual differences and fitting methods for the two-choice diffusion model of decision making. Decision 2, 237–279 (2015).
-
Lerche, V., Voss, A. & Nagler, M. How many trials are required for parameter estimation in diffusion modeling? A comparison of different optimization criteria. Behav. Res. Methods 49, 513–537 (2017).
-
Lee, M. D. & Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course (Cambridge Univ. Press, 2014).
-
Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L. & Köthe, U. BayesFlow: learning complex stochastic models with invertible neural networks. IEEE Trans. Neural Netw. Learn. Syst. 1–15 (2020).
-
Xu, K., Nosek, B. & Greenwald, A. Psychology data from the race implicit association test on the Project Implicit demo website. J. Open Psychol. Data 2, e3 (2014).
-
Ratcliff, R. Modeling aging effects on two-choice tasks: response signal and response time data. Psychol. Aging 23, 900–916 (2008).
-
Ratcliff, R., Love, J., Thompson, C. A. & Opfer, J. E. Children are not like older adults: a diffusion model analysis of developmental changes in speeded responses. Child Dev. 83, 367–381 (2012).
-
Reuter-Lorenz, P. A. & Park, D. C. How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychol. Rev. 24, 355–370 (2014).
-
Payne, B. K. Prejudice and perception: the role of automatic and controlled processes in misperceiving a weapon. J. Pers. Soc. Psychol. 81, 181–192 (2001).
-
Conrey, F. R., Sherman, J. W., Gawronski, B., Hugenberg, K. & Groom, C. J. Separating multiple processes in implicit social cognition: the quad model of implicit task performance. J. Pers. Soc. Psychol. 89, 469–487 (2005).
-
Meissner, F. & Rothermund, K. Estimating the contributions of associations and recoding in the implicit association test: the real model for the IAT. J. Pers. Soc. Psychol. 104, 45–69 (2013).
-
Stahl, C. & Degner, J. Assessing automatic activation of valence: a multinomial model of EAST performance. Exp. Psychol. 54, 99–112 (2007).
-
Nadarevic, L. & Erdfelder, E. Cognitive processes in implicit attitude tasks: an experimental validation of the trip model. Eur. J. Soc. Psychol. 41, 254–268 (2011).
-
Heck, D. W. & Erdfelder, E. Extending multinomial processing tree models to measure the relative speed of cognitive processes. Psychon. Bull. Rev. 23, 1440–1465 (2016).
-
Klauer, K. C. & Kellen, D. RT-MPTs: process models for response-time distributions based on multinomial processing trees with applications to recognition memory. J. Math. Psychol. 82, 111–130 (2018).
-
Hartmann, R. & Klauer, K. C. Extending RT-MPTs to enable equal process times. J. Math. Psychol. 96, 102340 (2020).
-
Greenwald, A. G., McGhee, D. E. & Schwartz, J. L. Measuring individual differences in implicit cognition: the implicit association test. J. Pers. Soc. Psychol. 74, 1464–1480 (1998).
-
Greenwald, A. G., Nosek, B. A. & Banaji, M. R. Understanding and using the implicit association test: I. An improved scoring algorithm. J. Pers. Soc. Psychol. 85, 197–216 (2003).
-
Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).
-
Klauer, K. C., Voss, A., Schmitz, F. & Teige-Mocigemba, S. Process components of the implicit association test: a diffusion-model analysis. J. Pers. Soc. Psychol. 93, 353–368 (2007).
-
Matzke, D. & Wagenmakers, E.-J. Psychological interpretation of the ex-Gaussian and shifted Wald parameters: a diffusion model analysis. Psychon. Bull. Rev. 16, 798–817 (2009).
-
Schad, D. J., Betancourt, M. & Vasishth, S. Toward a principled Bayesian workflow in cognitive science. Psychol. Methods 26, 103–126 (2020).
-
Lindeløv, J. K. mcp: an R package for regression with multiple change points. Preprint at OSF Preprints https://doi.org/10.31219/osf.io/fzqxv (2020).
-
Van Rossum, G. & Drake Jr, F. L. Python Tutorial (Centrum voor Wiskunde en Info rmatica, 2006).
-
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
-
Bloem-Reddy, B. & Teh, Y. W. Probabilistic symmetries and invariant neural networks. J. Mach. Learn. Res. 21(90), 1–61 (2020).