This comic is implied to be a part of a huge diagram that shows each of the eight planets at real size (as seen by the ant on Earth’s surface). Each planet is represented by a circle thousands of kilometers in diameter. However, the planets have been awkwardly placed in an extremely tight circle, so that all eight planets touch (or nearly touch) a tiny central area of “space” a few inches large. This comic shows a fraction of this diagram, cropped so that we see this area of “space” and a little of the edge of each planet intentionally arranged next to it.
The joke of this comic appears to be that when planets are indeed displayed at a 1:1 scale, it is almost impossible to tell their relative sizes, even when the image technically shows (part of) each of the planets
The reason why each planet’s circular border appears straight is because it’s such a small area of each planet: you’re only seeing a couple of square inches of the surface of each of the planets, and even though they are all round, the curvature would be imperceptible on this scale. The four gas giants are completely smooth, whereas the four rocky planets display features, most notably on Earth where grass and an ant are visible.
That it cannot have been an image of the real planets aligning is clear, as Mercury can be shown to be in front of Jupiter (implying that the latter is in the part of its orbit on the far side of the Sun from the viewer), yet Jupiter obscures Earth (which necessitates that it be in the arc of orbit nearest any given observer). In the title text it is made clear that this is just a small part of a larger drawing, so this is not an image taken from far away – they are only placed this way for scale.
The title text remarks that it is hard to find a display that supports a version of the image without cropping. This is because a true 1:1 scale image showing all of the planets would be at least as big as the largest one, Jupiter – far larger than any monitor or display currently available[citation needed] – or perhaps even big enough to hold Saturn’s rings, in whatever orientation they lie. Furthermore, the amount of video memory that a graphics card would need to have in order to output at anywhere near the same DPI to such a display, even as a 1-bit-per-pixel-image (i.e., all pixels are either black or white), is well beyond the capabilities of any graphic card that existed at the time of publication.[citation needed]
Really want an explanation for this one. Melomaniac (talk) 03:23, 11 April 2023 (UTC)
My comment got deleted by a bot!!! 2659: Unreliable Connection (talk) 03:23, 11 April 2023 (UTC)
- RIP… Melomaniac (talk) 03:25, 11 April 2023 (UTC)
- No, UC, it just got overwritten by the ‘bot, when it did its job and (re)created the whole initial state of the various pages to depict the new comic coming out. (Noting that you’d not set them all up fully/correctly.)
- That you had spotted it already and had just gotten in ahead of the ‘bot clearly isn’t something it was prepared to handle. But as someone spotting it can usually wait a short while for the ‘bot to catch up, I don’t think it’s a problem. In fact, you could have just copied your old contributions into the now receptive page(s), with nary any comment. Too late now. 172.70.90.101 03:44, 11 April 2023 (UTC)
-
- This may have broken the next link on the previous page. —172.71.160.36 06:41, 11 April 2023 (UTC)
The lines represent the surfaces of the planets I think, so it’s basically all the planets overlaid on top of each other. 172.71.142.35 03:28, 11 April 2023 (UTC)
- Yup, I think it’s what he meant – but I find it unlikely that the gas giants would have this clear cutoff of a “surface”. 162.158.189.241 03:34, 11 April 2023 (UTC)
- If there is a gas – liquid phase transition (and I think at least the gas giants have them): Why not? OK, you could see “rain” as blurring a clear cutoff, but wouldn’t that also apply to Earth, then?Tier666 (talk) 08:04, 11 April 2023 (UTC)
- Gas giants’ diameters are frequently defined at the average radius at which the atmosphere has a pressure of 1 bar (approximately equal to the pressure at sea level on Earth). There’s not a physical edge there, like the boundary between the ground and the atmosphere on a rocky planet, but it is a reasonably well-defined (or, at least, define-able) measurement. FWIW, the pressure gradient is pretty high, and Jupiter’s atmospheric pressure increases from 1 bar to 10 bar over about 100 km, which is about 0.1% of the radius, so it’s fairly insensitive to the pressure you choose.162.158.158.139 16:20, 13 April 2023 (UTC)
- If there is a gas – liquid phase transition (and I think at least the gas giants have them): Why not? OK, you could see “rain” as blurring a clear cutoff, but wouldn’t that also apply to Earth, then?Tier666 (talk) 08:04, 11 April 2023 (UTC)
I’d think the same citation as stands for ridiculously large would also cover larger than currently exists on earth, and his that citation is not in fact needed? 162.158.174.186 06:53, 11 April 2023 (UTC)
- It seems like the gas-covered worlds are explicitly those with clearly cutoff “surfaces,” so maybe in those cases the cutoff is some specific gas density — which occurs at a consistent radius throughout the planet, thus creating a flat surface. While for rocky worlds (except Venus, which is treated like a gas planet here), a density cutoff can lead to bumpiness due to terrain. Trimeta (talk) 03:57, 11 April 2023 (UTC)
- Correct re: gas giants. Typically 1 bar, which is approximately Earth’s atmospheric pressure at sea level.162.158.158.139 16:20, 13 April 2023 (UTC)
- just to be very clear (this being a explanation site!) that Venus is “treated like a gas giant” because of it’s thick atmosphere. It would be just as correct to say “All the gas giants are treated like Venus” After all, ordinary telescopes couldn’t take a picture that sees through any atmospheres, except Earth, where you’d see clouds but often surface where clouds don’t appear. Sorry if that’s an overexplanation Cuvtixo (talk) 19:10, 11 April 2023 (UTC)
On Twitter there seems to be concern that all planets are depicted flat. This may make this a contribution/mockery of the ongoing Flat Earth discussions in some corners of the internet. —198.41.242.132 06:49, 11 April 2023 (UTC)
- You can’t see the curvature of the Earth when standing on it; doesn’t mean it’s flat. Since we’re looking at the planets at a 1:1 scale, we’re literally only seeing a couple of inches of each of their edges (notwithstanding the whole gas-giants-don’t-have-a-sharp-edge issue). 162.158.239.20 12:06, 11 April 2023 (UTC)
- actually you can see it, standing on the shore of any large lake on a calm day looking at a shore that’s ~6.5 miles (10.5km) away. You’ll lose ~8ft (2.5m) below the horizon – 162.158.186.213 13:55, 11 April 2023 (UTC)
The display for an uncropped version of the image would not only be larger than any display on earth. It would be larger than earth. 162.158.86.243 06:59, 11 April 2023 (UTC)
- By necessity, at least as large as Jupiter. Maybe slightly above two Jupiters (max dimension squared compared to display height*width of any common aspect ratio) if you wanted to not overlay any of the others at all. And make the lower limit a packing-problem, then add a buffer so there isn’t the actual need for any to touch. 172.70.90.253 10:02, 11 April 2023 (UTC)
- I’m going to add that. Someone was confused enough to put Template:cite needed there, which may be a joke onto itself?, I can’t tell. I’ve removed the cite needed, but I guess it needs to be more clear why it’s totally nonsensical and doesn’t need a citation? Cuvtixo (talk) 19:16, 11 April 2023 (UTC)
- The four inner planets are small enough to fit the upper left corner of any display big enough for Jupiter. As Uranus and Neptune are smaller than the latter one, they cannot extend past its top, bottom or right edge in the constellation shown, so they will not need additonal screen space either. Only Saturn is shifted so far to the left that he will require more width than Jupiter itself, but will still fit within the same height. Knowing Randall, the shown angles are not random, but were calculated to match a commercial available display ratio with Saturn placed touching the left edge and Jupiter touching the top, bottom and right edges. 16:9 or 16:10 at 142 km hight would be a fair guess, so I would not rule out 4:3 resulting in total width significantly smaller than two Jupiters. Of course Randall might also be playing hardcore nerd: The outer diameter of Saturns F ring, which is almost always included in representations, has almost exactly a ratio of 32:9 to Jupiters polar diameter, making a picture showing the former in front of the latter a perfect match for those new fancy double wide monitors. 162.158.111.77 00:22, 12 April 2023 (UTC)
- I’m going to add that. Someone was confused enough to put Template:cite needed there, which may be a joke onto itself?, I can’t tell. I’ve removed the cite needed, but I guess it needs to be more clear why it’s totally nonsensical and doesn’t need a citation? Cuvtixo (talk) 19:16, 11 April 2023 (UTC)
- Just u