DeepMind’s new model, Gato, has sparked a debate on whether artificial general intelligence (AGI) is nearer–almost at hand–just a matter of scale. Gato is a model that can solve multiple unrelated problems: it can play a large number of different games, label images, chat, operate a robot, and more. Not so many years ago, one problem with AI was that AI systems were only good at one thing. After IBM’s Deep Blue defeated Garry Kasparov in chess, it was easy to say “But the ability to play chess isn’t really what we mean by intelligence.” A model that plays chess can’t also play space wars. That’s obviously no longer true; we can now have models capable of doing many different things. 600 things, in fact, and future models will no doubt do more.
So, are we on the verge of artificial general intelligence, as Nando de Frietas (research director at DeepMind) claims? That the only problem left is scale? I don’t think so. It seems inappropriate to be talking about AGI when we don’t really have a good definition of “intelligence.” If we had AGI, how would we know it? We have a lot of vague notions about the Turing test, but in the final analysis, Turing wasn’t offering a definition of machine intelligence; he was probing the question of what human intelligence means.
Consciousness and intelligence seem to require some sort of agency. An AI can’t choose what it wants to learn, neither can it say “I don’t want to play Go, I’d rather play Chess.” Now that we have computers that can do both, can they “want” to play one game or the other? One reason we know our children (and, for that matter, our pets) are intelligent and not just automatons is that they’re capable of disobeying. A child can refuse to do homework; a dog can refuse to sit. And that refusal is as important to intelligence as the ability to solve differential equations, or to play chess. Indeed, the path towards artificial intelligence is as much about teaching us what intelligence isn’t (as Turing knew) as it is about building an AGI.
Even if we accept that Gato is a huge step on the path towards AGI, and that scaling is the only problem that’s left, it is more than a bit problematic to think that scaling is a problem that’s easily solved. We don’t know how much power it took to train Gato, but GPT-3 required about 1.3 Gigawatt-hours: roughly 1/1000th the energy it takes to run the Large Hadron Collider for a year. Granted, Gato is much smaller than GPT-3, though it doesn’t work as well; Gato’s performance is generally inferior to that of single-function models. And granted, a lot can be done to optimize training (and DeepMind has done a lot of work on models that require less energy). But Gato has just over 600 capabilities, focusing on natural language processing, image classification, and game playing. These are only a few of many tasks an AGI will need to perform. How many tasks would a machine be able to perform to qualify as a “general intelligence”? Thousands? Millions? Can those tasks even be enumerated? At some point, the project of training an artificial general intelligence sounds like something from Douglas Adams’ novel The Hitchhiker’s Guide to the Galaxy, in which the Earth is a computer designed by an AI called Deep Thought to answer the question “What is the question to which 42 is the answer?”
Building bigger and bigger models in hope of somehow achieving general intelligence may be an interesting research project, but AI may already have achieved a level of performance that suggests specialized training on top of existing foundation models will reap far more short term benefits. A foundation model trained to recognize images can be trained further to be part of a self-driving car, or to create generative art. A foundation model like GPT-3 trained to understand and speak human language can be trained more deeply to write computer code.
Yann LeCun posted a Twitter thread about general intelligence (consolidated on Facebook) stating some “simple facts.” First, LeCun says that there is no such thing as “general intelligence.” LeCun also says that “human level AI” is a useful goal–acknowledging that human intelligence itself is something less than the type of general intelligence sought for AI. All humans are specialized to some extent. I’m human; I’m arguably intelligent; I can play Chess and Go, but not Xiangqi (often called Chinese Chess) or Golf. I could presumably learn to play other games, but I don’t have to learn them all. I can also play the piano, but not the violin. I can speak a few languages. Some humans can speak dozens, but none of them speak every language.
There’s an important point about expertise hidden in here: we expect our AGIs to be “experts” (to beat top-level Chess and Go players), but as a human, I’m only fair at chess and poor at Go. Does human intelligence require expertise? (Hint: re-read Turing’s original p