Summers for me are paradoxically the time I can get work done, and the time in which I feel I have the most work. I’m not teaching, which in theory means I have much more unstructured time. The consequence, though, is that I have about a million projects I am trying to get done in what is still a limited amount of time, and I’m also trying to see family, friends, and get a little rest. I sort of took June off from blogging (which I felt was my due after the amount of exposure I got in April and May), but I have several posts “in the hopper,” and several other things coming out soon. Yesterday I gave a talk at the US Department of State as part of their Timbie Forum (what used to be called their Generation Prague conference). I was tasked with providing the historical background on the US nuclear “triad,” as part of a panel discussion of the future of the triad. This is subject-matter I’ve taught before, so I felt pretty comfortable with it, but I thought I would return to a few of my favorite sources and refresh my understanding. This post is something of a write-up of my notes — more than I could say in a 20-minute talk.
There is a lot of buzzing about lately about the future of the United States’ “nuclear triad.” The triad is the strategic reliance on three specific delivery “platforms” for deterrence: manned-bombers (the B-2 and the B-52), long-range intercontinental ballistic missiles (ICBMs; specifically the Minuteman III), and submarine-launched ballistic missiles (SLBMs; specifically the Trident II missile carried by Ohio class submarines). Do we need all three “legs” of the triad? I don’t know — that’s a question for another day, and depends on how you balance the specific benefits and risks of each “leg” with the costs of maintaining or upgrading them. But as we think about the future of the US arsenal, looking at how the triad situation came about, and how people started talking about it as a “triad,” offers some interesting food for thought.
The stated logic of the triad has long as such: 1) bombers are flexible in terms of their armaments and deployments (and have non-nuclear roles); 2) ICBM forces are kept far from the enemy, are highly-accurate, and thus make a first-strike attack require a huge amount of “investment” to contemplate; 3) SLBM forces are, for the near term, capable of being kept completely hidden from attack, and thus are a guaranteed “second strike” capability. The combination of these three factors, the logic goes, keeps anyone from thinking they could get away with a nuclear attack.
That’s the rationale. It’s not the history of it, though. Like so many things, the history is rather wooly, full of stops-and-starts, and a spaghetti graph of different organizations, initiatives, committees, industrial contractors, and ideas. I have tried to summarize a lot of material below — with an idea to pointing out how each “leg” of the triad got (or did not get, depending on when) the support it needed to become a reality. I only take these histories up through about 1960, after which each of the three “legs” were deployed (and to try and go much further would result in an even-longer post).
LEG 1: MANNED BOMBERS
The United States’ first approach to the “delivery” question was manned, long-range bombers. Starting with the B-29, which delivered the first atomic bombs, and some 80 million pounds of incendiaries, over Japanese cities during World War II, the US was deeply committed to the use of aircraft as the means of getting the weapons from “here” to “there.” Arguably, this commitment was a bit overextended. Bureaucratic and human factors led to what might be called a US obsession with the bomber. The officers who rose through the ranks of the US Army Air Forces, and the newly-created (in 1947) US Air Force, were primarily bomber men. They came out of a culture that saw pilots as the ultimate embodiment of military prowess. There were some exceptions, but they were rare.
The B-29’s power was more than military — it became a symbol of a new form of warfare for the generals of the newly-constituted US Air Force. Source.
In their defense, the US had two major advantages over the Soviet Union with respect to bombers. The first is that the US had a lot more experience building them: the B-29 “Superfortress” was an impressive piece of machinery, capable of flying further, faster, and with a higher load of armaments than anything else in the world at the time, and it was just the beginning.
The second was geography. The B-29 had a lot of range, but it wasn’t intercontinental. With a range of some 3,250 miles, it could go pretty far: from the Marianas to anywhere in Japan and back, for example. But it couldn’t fly a bomb-load to Moscow from the United States (not even from Alaska, which was only in range of the eastern half of Russia). This might not look like an advantage, but consider that this same isolation made it very hard for the Soviet Union to use bombers to threaten the United States in the near-term, and that the US had something that the USSR did not: lots of friends near its enemy’s borders.
As early as late August 1945, the United States military planners were contemplating how they could use friendly airfields — some already under US control, some not — to put a ring around the Soviet Union, and to knock it out of commission if need be. In practice, it took several years for this to happen. Deployments of non-nuclear components of nuclear weapons abroad waited until 1948, during the Berlin Blockade, and the early stages of the Korean War.
US nuclear bomber deployments, 1945-1958. One of my favorite slides that I use when teaching — it shows what “containment” comes to mean, and amply demonstrates the geopolitics of Cold War bomber bases. Shadings indicate allies/blocs circa 1958.
In 1951, President Truman authorized small numbers of nuclear weapons (with fissile cores) to be deployed to Guam. But starting in 1954, American nuclear weapons began to be dispersed all-around the Soviet perimeter: French Morocco, Okinawa, and the United Kingdom in 1954; West Germany in 1955; Iwo Jima, Italy, and the Philippines in 1957; and France, Greenland, Spain, South Korea, Taiwan, and Tunisia in 1958. This was “containment” made real, all the more so as the USSR had no similar options in the Western Hemisphere until the Cuban Revolution. (And as my students always remark, this map puts the Cuban Missile Crisis into perspective.)1
And if the B-29 had been impressive, later bombers were even more so. The B-36 held even more promise. Its development had started during World War II, and its ability to extend the United States’ nuclear reach was anticipated as early as 1945. It didn’t end up being deployed until 1948, but added over 700 miles to the range of US strategic forces, and could carry some 50,000 lbs more fuel and armament. The B-52 bomber, still in service, was ready for service by 1955, and extended the range of bombers by another several hundred miles, increased the maximum flight speed by more than 200 miles per hour.2
Plane | First flight | Introduced in service | Combat range (mi) | Maximum speed (mph) | Service ceiling (ft) | Bomb weight (lbs) |
B-17 | 1935 | 1938 | 2,000 | 287 | 35,600 | 4,500 |
B-29 | 1942 | 1944 | 3,250 | 357 | 31,850 | 20,000 |
B-36 | 1946 | 1948 | 3,985 | 435 | 43,000 | 72,000 |
B-52 | 1952 | 1955 | 4,480 | 650 | 50,000 | 70,000 |
B-2 | 1989 | 1997 | 6,000 | 630 | 50,000 | 40,000 |
So you can see, in a sense, why the US Air Force was so focused on bombers. They worked, they held uniquely American advantages, and you could see how incremental improvement would make them fly faster, farther, and with more weight than before. But there were more than just technical considerations in mind: fascination with the bomber was also cultural. It was also about the implied role of skill and value of control in a human-driven weapon, and it was also about the idea of “brave men” who fly into the face of danger. The bomber pilot was still a “warrior” in the traditional sense, even if his steed was a complicated metal tube flying several miles above the Earth.
LEG 2: LAND-BASED INTERCONTINENTAL BALLISTIC MISSILES (ICBMs)
But it wasn’t just that the USAF was pro-bomber. They were distinctly anti-missile for a long time. Why? The late Thomas Hughes, in his history of Project Atlas, attributes a distinct “conservative momentum, or inertia” to the USAF’s approach to missiles. Long-range missiles would be disruptive to the hierarchy: engineers and scientists would be on top, with no role for pilots in sight. Officers would, in a sense, become de-skilled. And perhaps there was just something not very sporting about lobbing nukes at another country from the other side of the Earth.3
But, to be fair, it wasn’t just the Air Force generals. The scientists of the mid-1940s were not enthusiastic, either. Vannevar Bush told Congress in 1945 that:
There has been a great deal said about a 3,000 mile high-angle rocket. In my opinion such a thing is impossible and will be impossible for many years. The people who have been writing these things that annoy me have been talking about a 3,000 mile high-angle rocket shot from one continent to another carrying an atomic bomb, and so directed as to be a precise weapon which would land on a certain target such as this city. I say technically I don’t think anybody in the world knows how to do such a thing, and I feel confident it will not be done for a very long time to come.
Small amounts of money had been doled out to long-range rocket research as early as 1946. The Germans, of course, had done a lot of pioneering work on medium-range missiles, and their experts were duly acquired and re-purposed as part of Operation Paperclip. The Air Force had some interest in missiles, though initially the ones they were more enthusiastic about were what we would call cruise missiles today: planes without pilots. Long-range ballistic missiles were very low on the priority list. As late as 1949 the National Security Council gave ballistic missiles no research priority going forward — bombers got all of it.