These days, any quantum computing post I write ought to begin with the disclaimer that the armies of Sauron are triumphing around the globe, this is the darkest time for humanity most of us have ever known, and nothing else matters by comparison. Certainly not quantum computing. Nevertheless stuff happens in quantum computing and it often brings me happiness to blog about it—certainly more happiness than doomscrolling or political arguments.
So then: today JP Morgan Chase announced that, together with Quantinuum and DoE labs, they’ve experimentally demonstrated the protocol I proposed in 2018, and further developed in a STOC’2023 paper with Shih-Han Hung, for using current quantum supremacy experiments to generate certifiable random bits for use in cryptographic applications. See here for our paper in Nature—the JPMC team was gracious enough to include me and Shih-Han as coauthors.
Mirroring a conceptual split in the protocol itself, Quantinuum handled the quantum hardware part of my protocol, while JPMC handled the rest: modification of the protocol to make it suitable for trapped ions, as well as software to generate pseudorandom challenge circuits to send to the quantum computer over the Internet, then to verify the correctness of the quantum computer’s outputs (thereby ensuring, under reasonable complexity assumptions, that the outputs contained at least a certain amount of entropy), and finally to extract nearly uniform random bits from the outputs. The experiment used Quantinuum’s 56-qubit trapped-ion quantum computer, which was given and took a couple seconds to respond to each challenge. Verification of the outputs was done using the Frontier and Summit supercomputers. The team estimates that about 70,000 certified random bits were generated over 18 hours, in such a way that, using the best currently-known attack, you’d need at least about four Frontier supercomputers working continuously to spoof the quantum computer’s outputs, and get the verifier to accept non-random bits.
We should be clear that this gap, though impressive from the standpoint of demonstrating quantum supremacy with trapped ions, is not yet good enough for high-stakes cryptographic applications (more about that later). Another important caveat is that the parameters of the experiment aren’t yet good enough for my and Shih-Han’s formal security reduction to give assurances: instead, for the moment one only has “practical security,” or security against a class of simplified yet realistic attackers. I hope that future experiments will build on the JPMC/Quantinuum achievement and remedy these issues.
The story of this certified randomness protocol starts seven years ago, when I had lunch with Or Sattath at a Japanese restaurant in Tel Aviv. Or told me that I needed to pay more attention to the then-recent Quantum Lightning paper by Mark Zhandry. I already know that paper is great, I said. You don’t know the half of it, Or replied. As one byproduct of what he’s doing, for example, Mark giv