1. Lamb, W.F., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J.G.J.et al. (2021) A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett.
16, 073005
10.1088/1748-9326/abee4e [CrossRef] [Google Scholar]
2. IPCC. (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge/New York, U.K./U.S.A. [Google Scholar]
3. Hansen, J., Sato, M. and Ruedy, R. (2012) Perception of climate change. Proc. Natl Acad. Sci. U.S.A.
109, E2415–E2423
10.1073/pnas.1205276109 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
4. Perkins-Kirkpatrick, S.E. and Lewis, S.C. (2020) Increasing trends in regional heatwaves. Nat. Commun.
11, 3357
10.1038/s41467-020-16970-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
5. Ruelland, E. and Zachowski, A. (2010) How plants sense temperature. Environ. Exp. Bot.
69, 225–232
10.1016/j.envexpbot.2010.05.011 [CrossRef] [Google Scholar]
7. Michaletz, S.T., Weiser, M.D., Zhou, J., Kaspari, M., Helliker, B.R. and Enquist, B.J. (2015) Plant thermoregulation: energetics, trait–environment interactions, and carbon economics. Trends Ecol. Evol.
30, 714–724
10.1016/j.tree.2015.09.006 [PubMed] [CrossRef] [Google Scholar]
8. Still, C.J., Rastogi, B., Page, G.F.M., Griffith, D.M., Sibley, A., Schulze, M.et al. (2021) Imaging canopy temperature: shedding (thermal) light on ecosystem processes. New Phytol.
230, 1746–1753
10.1111/nph.17321 [PubMed] [CrossRef] [Google Scholar]
9. Yamori, W., Hikosaka, K. and Way, D.A. (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth. Res.
119, 101–117
10.1007/s11120-013-9874-6 [PubMed] [CrossRef] [Google Scholar]
10. Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng, D.et al. (2017) Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun.
8, 13931
10.1038/ncomms13931 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
11. Fu, P., Jaiswal, D., McGrath, J.M., Wang, S., Long, S.P. and Bernacchi, C.J. (2022) Drought imprints on crops can reduce yield loss: nature’s insights for food security. Food Energy Security
11, e332
10.1002/fes3.332 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
12. Duffy, K.A., Schwalm, C.R., Arcus, V.L., Koch, G.W., Liang, L.L. and Schipper, L.A. (2021) How close are we to the temperature tipping point of the terrestrial biosphere?
Sci. Adv.
7, eaay1052
10.1126/sciadv.aay1052 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
13. Sage, R.F. and Kubien, D.S. (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ.
30, 1086–1106
10.1111/j.1365-3040.2007.01682.x [PubMed] [CrossRef] [Google Scholar]
14. Bernacchi, C.J., Pimentel, C. and Long, S.P. (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ.
26, 1419–1430
10.1046/j.0016-8025.2003.01050.x [CrossRef] [Google Scholar]
15. Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis Jr, A.R. and Long, S.P. (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ.
24, 253–259
10.1111/j.1365-3040.2001.00668.x [CrossRef] [Google Scholar]
16. Bernacchi, C.J., Portis, A.R., Nakano, H., von Caemmerer, S. and Long, S.P. (2002) Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol.
130, 1992–1998
10.1104/pp.008250 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
17. Bernacchi, C.J., Rosenthal, D.M., Pimentel, C., Long, S.P. and Farquhar, G.D. (2009) Modeling the temperature dependence of C3 photosynthesis. In Photosynthesis in Silico. Advances in Photosynthesis and Respiration (Laisk, A., Nedbal, L. and Govindjee, eds). pp. 231–246, Springer, Dordrecht [Google Scholar]
18. Farquhar, G.D., von Caemmerer, S. and Berry, J.A. (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta
149, 78–90
10.1007/BF00386231 [PubMed] [CrossRef] [Google Scholar]
19. Dusenge, M.E., Duarte, A.G. and Way, D.A. (2019) Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol.
221, 32–49
10.1111/nph.15283 [PubMed] [CrossRef] [Google Scholar]
20. Long, S.P. (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated?
Plant Cell Environ.
14, 729–739
10.1111/j.1365-3040.1991.tb01439.x [CrossRef] [Google Scholar]
21. Way, D.A. and Yamori, W. (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth. Res.
119, 89–100
10.1007/s11120-013-9873-7 [PubMed] [CrossRef] [Google Scholar]
22. Lohani, N., Singh, M.B. and Bhalla, P.L. (2019) High temperature susceptibility of sexual reproduction in crop plants. J. Exp. Bot.
71, 555–568
10.1093/jxb/erz426 [PubMed] [CrossRef] [Google Scholar]
23. De Boeck, H.J., Vicca, S., Roy, J., Nijs, I., Milcu, A., Kreyling, J.et al. (2015) Global change experiments: challenges and opportunities. BioScience
65, 922–931
10.1093/biosci/biv099 [CrossRef] [Google Scholar]
24. Ettinger, A., Chuine, I., Cook, B., Dukes, J., Ellison, A., Johnston, M.et al. (2019) How do climate change experiments alter plot-scale climate?
Ecol. Lett.
22, 748–763
10.1111/ele.13223 [PubMed] [CrossRef] [Google Scholar]
25. Asseng, S., Ewert, F., Martre, P., Rötter, R.P., Lobell, D.B., Cammarano, D.et al. (2015) Rising temperatures reduce global wheat production. Nat. Clim. Change
5, 143–147
10.1038/nclimate2470 [CrossRef] [Google Scholar]
26. Amthor, J., Hanson, P., Norby, R. and Wullschleger, S. (2010) A comment on “Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality” by aronson and mcNulty. Agric. Forest Meteorol.
150, 497–498
10.1016/j.agrformet.2009.11.020 [CrossRef] [Google Scholar]
27. Aronson, E.L. and McNulty, S.G. (2009) Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agric. Forest Meteorol.
149, 1791–1799
10.1016/j.agrformet.2009.06.007 [CrossRef] [Google Scholar]
28. Kimball, B.A. (2011) Comment on the comment by Amthor et al. on “Appropriate experimental ecosystem warming methods” by Aronson and McNulty. Agric. Forest Meteorol.
151, 420–424
10.1016/j.agrformet.2010.11.013 [CrossRef] [Google Scholar]
29. Shaver, G.R., Canadell, J., Chapin, F.S., Gurevitch, J., Harte, J., Henry, G.et al. (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience
50, 871–882
10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2 [CrossRef] [Google Scholar]
30. Frei, E.R., Schnell, L., Vitasse, Y., Wohlgemuth, T. and Moser, B. (2020) Assessing the effectiveness of in-situ active warming combined with open top chambers to study plant responses to climate change. Front. Plant Sci.
11, 539584
10.3389/fpls.2020.539584 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
31. Lu, X., O’Neill, C.M., Warner, S., Xiong, Q., Chen, X., Wells, R.et al. (2022) Winter warming post floral initiation delays flowering via bud dormancy activation and affects yield in a winter annual crop. Proc. Natl Acad. Sci. U.S.A.
119, e2204355119
10.1073/pnas.2204355119 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
32. Sadras, V., Moran, M. and Petrie, P. (2017) Resilience of grapevine yield in response to warming. Oeno One
51, 381–386
10.20870/oeno-one.2017.51.4.1913 [CrossRef] [Google Scholar]
33. Bokhorst, S., Huiskes, A., Aerts, R., Convey, P., Cooper, E.J., Dalen, L.et al. (2013) Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth. Glob. Chang. Biol.
19, 64–74
10.1111/gcb.12028 [PubMed] [CrossRef] [Google Scholar]
34. Welshofer, K.B., Zarnetske, P.L., Lany, N.K. and Thompson, L.A. (2018) Open-top chambers for temperature manipulation in taller-stature plant communities. Methods Ecol. Evol.
9, 254–259
10.1111/2041-210X.12863 [CrossRef] [Google Scholar]
35. Lewin, K.F., McMahon, A.M., Ely, K.S., Serbin, S.P. and Rogers, A. (2017) A zero-power warming chamber for investigating plant responses to rising temperature. Biogeosciences
14, 4071–4083
10.5194/bg-14-4071-2017 [CrossRef] [Google Scholar]
36. Bader, M.Y., Moureau, E., Nikolić, N., Madena, T., Koehn, N. and Zotz, G. (2022) Simulating climate change in situ in a tropical rainforest understorey using active air warming and CO2 addition. Ecol. Evol.
12, e8406
10.1002/ece3.8406 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
37. Pelini, S.L., Bowles, F.P., Ellison, A.M., Gotelli, N.J., Sanders, N.J. and Dunn, R.R. (2011) Heating up the forest: open-top chamber warming manipulation of arthropod communities at Harvard and Duke Forests. Methods Ecol. Evol.
2, 534–540
10.1111/j.2041-210X.2011.00100.x [CrossRef] [Google Scholar]
38. Maynard, L.D., Moureau, E., Bader, M.Y., Salazar, D., Zotz, G. and Whitehead, S.R. (2022) Effects of climate change on plant resource allocation and herbivore interactions in a Neotropical rainforest shrub. Ecol. Evol.
12, e9198
10.1002/ece3.9198 [CrossRef] [Google Scholar]
39. Long, S.P., Ainsworth, E.A., Leakey, A.D., Nosberger, J. and Ort, D.R. (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science
312, 1918–1921
10.1126/science.1114722 [PubMed] [CrossRef] [Google Scholar]
40. McLeod, A. and Long, S. (1999) Free-air carbon dioxide enrichment (FACE) in global change research: a review. Adv. Ecol. Res.
28, 1–56
10.1016/S0065-2504(08)60028-8 [CrossRef] [Google Scholar]
41. Melillo, J.M., Frey, S.D., DeAngelis, K.M., Werner, W.J., Bernard, M.J., Bowles, F.P.et al. (2017) Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science
358, 101–105
10.1126/science.aan2874 [PubMed] [CrossRef] [Google Scholar]
42. Sorensen, P.O., Finzi, A.C., Giasson, M.-A., Reinmann, A.B., Sanders-DeMott, R. and Templer, P.H. (2018) Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming. Soil Biol. Biochem.
116, 39–47
10.1016/j.soilbio.2017.09.026 [CrossRef] [Google Scholar]
43. Bridgham, S.D., Pastor, J., Updegraff, K., Malterer, T.J., Johnson, K., Harth, C.et al. (1999) Ecosystem control over temperature and energy flux in northern peatlands. Ecol. Appl.
9, 1345–1358
10.1890/1051-0761(1999)009[1345:ECOTAE]2.0.CO;2 [CrossRef] [Google Scholar]
44. Noormets, A., Chen, J., Bridgham, S.D., Weltzin, J.F., Pastor, J., Dewey, B.et al. (2004) The effects of infrared loading and water table on soil energy fluxes in Northern peatlands. Ecosystems
7, 573–582
10.1007/s10021-004-0013-2 [CrossRef] [Google Scholar]
45. De Boeck, H.J., De Groote, T. and Nijs, I. (2012) Leaf temperatures in glasshouses and open-top chambers. New Phytol.
194, 1155–1164
10.1111/j.1469-8137.2012.04117.x [PubMed] [CrossRef] [Google Scholar]
46. Harte, J. and Shaw, R. (1995) Shifting dominance within a montane vegetation community: results of a climate-warming experiment. Science
267, 876–880
10.1126/science.267.5199.876 [PubMed] [CrossRef] [Google Scholar]
47. Harte, J., Torn, M.S., Chang, F.-R., Feifarek, B., Kinzig, A.P., Shaw, R.et al. (1995) Global warming and soil microclimate: results from a meadow-warming experiment. Ecol. Appl.
5, 132–150
10.2307/1942058 [CrossRef] [Google Scholar]
48. Kimball, B.A., White, J.W., Ottman, M.J., Wall, G.W., Bernacchi, C.J., Morgan, J.et al. (2015) Predicting canopy temperatures and infrared heater energy requirements for warming field plots. Agron. J.
107, 129–141
10.2134/agronj14.0109 [CrossRef] [Google Scholar]
49. Kimball, B.A. (2005) Theory and performance of an infrared heater for ecosystem warming. Glob. Chang. Biol.
11, 2041–2056
10.1111/j.1365-2486.2005.1028.x [CrossRef] [Google Scholar]
50. Kimball, B.A. (2015) Using canopy resistance for infrared heater control when warming open-field plots. Agron. J.
107, 1105–1112
10.2134/agronj14.0418 [CrossRef] [Google Scholar]
51. Kimball, B.A., Alonso-Rodríguez, A.M., Cavaleri, M.A., Reed, S.C., González, G. and Wood, T.E. (2018) Infrared heater system for warming tropical forest understory plants and soils. Ecol. Evol.
8, 1932–1944
10.1002/ece3.3780 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
52. Kimball, B.A. and Conley, M.M. (2009) Infrared heater arrays for warming field plots scaled up to 5-m diameter. Agric. Forest Meteorol.
149, 721–724
10.1016/j.agrformet.2008.09.015 [CrossRef] [Google Scholar]
53. Kimball, B.A., Conley, M.M. and Lewin, K.F. (2012) Performance and energy costs associated with scaling infrared heater arrays for warming field plots from 1 to 100 m. Theor. Appl. Climatol.
108, 247–265
10.1007/s00704-011-0518-5 [CrossRef] [Google Scholar]
54. Kimball, B.A., Conley, M.M., Wang, S., Lin, X., Luo, C., Morgan, J.et al. (2008) Infrared heater arrays for warming ecosystem field plots. Glob. Chang. Biol.
14, 309–320
10.1111/j.1365-2486.2007.01486.x [CrossRef] [Google Scholar]
55. Ruiz-Vera, U.M., Siebers, M., Gray, S.B., Drag, D.W., Rosenthal, D.M., Kimball, B.A.et al. (2013) Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the midwestern United States. Plant Physiol.
162, 410–423
10.1104/pp.112.211938 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
56. Nijs, I., Kockelbergh, F., Teughels, H., Blum, H., Hendrey, G. and Impens, I. (1996) Free air temperature increase (FATI): a new tool to study global warming effects on plants in the field. Plant Cell Environ.
19, 495–502
10.1111/j.1365-3040.1996.tb00343.x [CrossRef] [Google Scholar]
57. Nijs, I., Teughels, H., Blum, H., Hendrey, G. and Impens, I. (1996) Simulation of climate change with infrared heaters reduces the productivity of Lolium perenne L. in summer. Environ. Exp. Bot.
36, 271–280
10.1016/0098-8472(96)01021-0 [CrossRef] [Google Scholar]
58. Shaw, M.R., Zavaleta, E.S., Chiariello, N.R., Cleland, E.E., Mooney, H.A. and Field, C.B. (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science
298, 1987–1990
10.1126/science.1075312 [PubMed] [CrossRef] [Google Scholar]
59. Wan, S., Luo, Y. and Wallace, L.L. (2002) Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Glob. Chang. Biol.
8, 754–768
10.1046/j.1365-2486.2002.00510.x [CrossRef] [Google Scholar]
60. Wall, G.W., Kimball, B.A., White, J.W. and Ottman, M.J. (2011) Gas exchange and water relations of spring wheat under full-season infrared warming. Glob. Chang. Biol.
17, 2113–2133
10.1111/j.1365-2486.2011.02399.x [CrossRef] [Google Scholar]
61. Ottman, M., Kimball, B., White, J. and Wall, G. (2012) Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating. Agron. J.
104, 7–16
10.2134/agronj2011.0212 [CrossRef] [Google Scholar]
62. Webber, H., Martre, P., Asseng, S., Kimball, B., White, J., Ottman, M.et al. (2017) Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: a multi-model comparison. Field Crops Res.
202, 21–35
10.1016/j.fcr.2015.10.009 [CrossRef] [Google Scholar]
63. Zhang, G., Ujiie, K., Yoshimoto, M., Sakai, H., Tokida, T., Usui, Y.et al. (2022) Daytime warming during early grain filling offsets the CO2 fertilization effect in rice. Environ. Res. Lett.
17, 114051
10.1088/1748-9326/aca038 [CrossRef] [Google Scholar]
64. Siebers, M. (2014) Impacts of Heat Waves on Food Quantity and Quality of Soybean/Corn in the Midwest at Ambient and Elevated [CO2], University of Illinois at Urbana-Champaign, Urbana [Google Scholar]
65. Grant, R., Kimball, B., Conley, M., White, J., Wall, G. and Ottman, M. (2011) Controlled warming effects on wheat growth and yield: field measurements and modeling. Agron. J.
103, 1742–1754
10.2134/agronj2011.0158 [CrossRef] [Google Scholar]
66. Norby, R., Edwards, N., Riggs, J., Abner, C., Wullschleger, S. and Gunderson, C. (1997) Temperature-controlled open-top chambers for global change research. Glob. Chang. Biol.
3, 259–267
10.1046/j.1365-2486.1997.00072.x [CrossRef] [Google Scholar]
67. De Boeck, H.J., Kimball, B.A., Miglietta, F. and Nijs, I. (2012) Quantification of excess water loss in plant canopies warmed with infrared heating. Glob. Chang. Biol.
18, 2860–2868
10.1111/j.1365-2486.2012.02734.x [PubMed] [CrossRef] [Google Scholar]
68. Grossiord, C., Buckley, T.N., Cernusak, L.A., Novick, K.A., Poulter, B., Siegwolf, R.T.W.et al. (2020) Plant responses to rising vapor pressure deficit. New Phytol.
226, 1550–1566
10.1111/nph.16485 [PubMed] [CrossRef] [Google Scholar]
69. Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C.et al. (2016) The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang.
6, 1023–1027
10.1038/nclimate3114 [CrossRef] [Google Scholar]
70. Ogren, W.L. (1984) Photorespiration: pathways, regulation, and modification. Annu. Rev. Plant Physiol.
35, 415–442
10.1146/annurev.pp.35.060184.002215 [CrossRef] [Google Scholar]
71. Badger, M. and Andrews, T. (1974) Effects of CO2, O2 and temperature on a high-affinity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochem. Biophys. Res. Commun.
60, 204–210
10.1016/0006-291x(74)90192-2 [PubMed] [CrossRef] [Google Scholar]
72. Crafts-Brandner, S.J., van de Loo, F.J. and Salvucci, M.E. (1997) The two forms of ribulose-1, 5-bisphosphate carboxylase/oxygenase Activase differ in sensitivity to elevated temperature. Plant Physiol.
114, 439–444
10.1104/pp.114.2.439 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
73. Salvucci, M.E. and Crafts-Brandner, S.J. (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol. Plant.
120, 179–186
10.1111/j.0031-9317.2004.0173.x [PubMed] [CrossRef] [Google Scholar]
74. Perdomo, J.A., Capó-Bauçà, S., Carmo-Silva, E. and Galmés, J. (2017) Rubisco and rubisco Activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Front. Plant Sci.
8, 490
10.3389/fpls.2017.00490 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
75. Perdomo, J.A., Carmo-Silva, E., Hermida-Carrera, C., Flexas, J. and Galmés, J. (2016) Acclimation of biochemical and diffusive components of photosynthesis in rice, wheat, and maize to heat and water deficit: implications for modeling photosynthesis. Front. Plant Sci.
7, 1719
10.3389/fpls.2016.01719 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
76. Rashid, M.A., Andersen, M.N., Wollenweber, B., Kørup, K., Zhang, X. and Olesen, J.E. (2018) Impact of heat-wave at high and low VPD on photosynthetic components of wheat and their recovery. Environ. Exp. Bot.
147, 138–146
10.1016/j.envexpbot.2017.12.009 [CrossRef] [Google Scholar]
77. Orr, D.J., Alcântara, A., Kapralov, M.V., Andralojc, P.J., Carmo-Silva, E. and Parry, M.A. (2016) Surveying Rubisco diversity and temperature response to improve crop photosynthetic efficiency. Plant Physiol.
172, 707–717
10.1104/pp.16.00750 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
78. von Caemmerer, S. and Evans, J.R. (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ.
38, 629–637
10.1111/pce.12449 [PubMed] [CrossRef] [Google Scholar]
79. Portis, Jr, A.R., Li, C., Wang, D. and and Salvucci, M.E. (2008) Regulation of Rubisco activase and its interaction with Rubisco. J. Exp. Bot.
59, 1597–1604
10.1093/jxb/erm240 [PubMed] [CrossRef] [Google Scholar]
80. Salvucci, M.E., Osteryoung, K.W., Crafts-Brandner, S.J. and Vierling, E. (2001) Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol.
127, 1053–1064
10.1104/pp.010357 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
81. Sage, R.F., Way, D.A. and Kubien, D.S. (2008) Rubisco, Rubisco activase, and global climate change. J. Exp. Bot.
59, 1581–1595
10.1093/jxb/ern053 [PubMed] [CrossRef] [Google Scholar]
82. Furbank, R.T. and Hatch, M.D. (1987) Mechanism of C4 photosynthesis: the size and composition of the inorganic carbon pool in bundle sheath cells. Plant Physiol.
85, 958–964
10.1104/pp.85.4.958 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
83. Hatch, M.D. (1992) C4 photosynthesis: an unlikely process full of surprises. Plant Cell Physiol.
33, 333–342
10.1093/oxfordjournals.pcp.a078260 [CrossRef] [Google Scholar]
84. Hatch, M.D. (2005) C4 photosynthesis: discovery and resolution. In Discoveries in Photosynthesis (Govindjee, Beatty, J.T., Gest, H., Allen, J.F.), pp. 875–880, Springer, Dordrecht [Google Scholar]
85. He, D. and Edwards, G.E. (1996) Estimation of diffusive resistance of bundle sheath cells to CO2 from modeling of C4 photosynthesis. Photosynth. Res.
49, 195–208
10.1007/BF00034781 [PubMed] [CrossRef] [Google Scholar]
86. Kiirats, O., Lea, P.J., Franceschi, V.R. and Edwards, G.E. (2002) Bundle sheath diffusive resistance to CO2 and effectiveness of C4 photosynthesis and refixation of photorespired CO2 in a C4 cycle mutant and wild-type Amaranthus edulis. Plant Physiol.
130, 964–976
10.1104/pp.008201 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
87. von Caemmerer, S. and Furbank, R.T. (2003) The C4 pathway: an efficient CO2 pump. Photosynth. Res.
77, 191–207
10.1023/A:1025830019591 [PubMed] [CrossRef] [Google Scholar]
88. Kim, S.Y., Slattery, R.A. and Ort, D.R. (2021) A role for differential Rubisco activase isoform expression in C4 bioenergy grasses at high temperature. Glob. Chang. Biol. Bioenergy
13, 211–223
10.1111/gcbb.12768 [CrossRef] [Google Scholar]
89. Bagley, J.E., Miller, J. and Bernacchi, C.J. (2015) Biophysical impacts of climate-smart agriculture in the Midwest United States. Plant Cell Environ.
38, 1913–1930
10.1111/pce.12485 [PubMed] [CrossRef] [Google Scholar]
90. Leisner, C.P., Yendrek, C.R. and Ainsworth, E.A. (2017) Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress. BMC Plant Biol.
17, 242
10.1186/s12870-017-1188-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]
91. Ruiz-Vera, U.M., Siebers, M.H., Jaiswal, D., Ort, D.R. and Bernacchi, C.J. (2018) Canopy warming accelerates development in soybean and maize, offsetting the delay in soybean reproductive development by elevated CO2 concentrations. Plant Cell Environ.
41, 2806–2820
10.1111/pce.13410 [PubMed] [CrossRef] [Google Scholar]
92. Tian, Y., Chen, J., Chen, C., Deng, A., Song, Z., Zheng, C.et al. (2012) Warming impacts on winter wheat phenophase and grain yield under field conditions in Yangtze Delta Plain, China. Field Crops Res.
134, 193–199
10.1016/j.fcr.2012.05.013 [CrossRef] [Google Scholar]
93. Zhao, C., Piao, S., Huang, Y., Wang, X., Ciais, P., Huang, M.et al. (2016) Field warming experiments shed light on the wheat yield response to temperature in China. Nat. Commun.
7, 13530
10.1038/ncomms13530 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
94. Usui, Y., Sakai, H., Tokida, T., Nakamura, H., Nakagawa, H. and Hasegawa, T. (2016) Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming. Glob. Chang. Biol.
22, 1256–1270
10.1111/gcb.13128 [PubMed] [CrossRef] [Google Scholar]
95. Wang, W., Cai, C., He, J., Gu, J., Zhu, G., Zhang, W.et al. (2020) Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Res.
248, 107605
10.1016/j.fcr.2019.107605 [CrossRef] [Google Scholar]
96. Ruiz-Vera, U.M., Siebers, M.H., Drag, D.W., Ort, D.R. and Bernacchi, C.J. (2015) Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2]. Glob. Chang. Biol.
21, 4237–4249
10.1111/gcb.13013 [PubMed] [CrossRef] [Google Scholar]
97. Köhler, I.H., Ruiz-Vera, U.M., VanLoocke, A., Thomey, M.L., Clemente, T., Long, S.P.et al. (2017) Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions. J. Exp. Bot.
68, 715–726
10.1093/jxb/erw435 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
98. Hatfield, J.L., Boote, K.J., Kimball, B.A., Ziska, L., Izaurralde, R.C., Ort, D.et al. (2011) Climate impacts on agriculture: implications for crop production. Agron. J.
103, 351–370
10.2134/agronj2010.0303 [CrossRef] [Google Scholar]
99. Rosenthal, D.M., Ruiz-Vera, U.M., Siebers, M.H., Gray, S.B., Bernacchi, C.J. and Ort, D.R. (2014) Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO2] and temperatures under fully open air field conditions. Plant Sci.
226, 136–146
10.1016/j.plantsci.2014.06.013 [PubMed] [CrossRef] [Google Scholar]
100. Bernacchi, C.J., Kimball, B.A., Quarles, D.R., Long, S.P. and Ort, D.R. (2007) Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol.
143, 134–144
10.1104/pp.106.089557 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
101. Wang, W., Cai, C., Lam, S.K., Liu, G. and Zhu, J. (2018) Elevated CO2 cannot compensate for japonica grain yield losses under increasing air temperature because of the decrease in spikelet density. Eur. J. Agron.
99, 21–29
10.1016/j.eja.2018.06.005 [CrossRef] [Google Scholar]
102. Heslop-Harrison, J. (1979) An interpretation of the hydrodynamics of pollen. Am. J. Bot.
66, 737–743
10.1002/j.1537-2197.1979.tb06277.x [CrossRef] [Google Scholar]
103. Schoper, J.B., Lambert, R.J., Vasilas, B.L. and Westgate, M.E. (1987) Plant factors controlling seed set in maize: the influence of silk, pollen, and ear-leaf water status and tassel heat treatment at pollination. Plant Physiol.
83, 121–125
10.1104/pp.83.1.121 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
104. Setter, T.L., Flannigan, B.A. and Melkonian, J. (2001) Loss of kernel set due to water deficit and shade in maize: carbohydrate supplies, abscisic acid, and cytokinins. Crop Sci.
41, 1530–1540
10.2135/cropsci2001.4151530x [CrossRef] [Google Scholar]
105. Zinselmeier, C., Jeong, B.-R. and Boyer, J.S. (1999) Starch and the control of kernel number in maize at low water potentials. Plant Physiol.
121, 25–36
10.1104/pp.121.1.25 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
106. Westgate, M.E. and Boyer, J.S. (1986) Reproduction at low and pollen water potentials in maize. Crop Sci.
26, 951–956
10.2135/cropsci1986.0011183X002600050023x [CrossRef] [Google Scholar]
107. Westgate, M.E. and Hatfield, J.L. (2011) Genetic adjustment to changing climates: maize. In Crop Adaptation to Climate Change (Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H. and Hall, A.E., eds), pp. 314–325, Wiley-Blackwell, Chichester [Google Scholar]
108. Fonseca, A.E. and Westgate, M.E. (2005) Relationship between desiccation and viability of maize pollen. Field Crops Res.
94, 114–125
10.1016/j.fcr.2004.12.001 [CrossRef] [Google Scholar]
109. Bathiany, S., Dakos, V., Scheffer, M. and Lenton, T. (2018) Climate models predict increasing temperature variability in poor countries. Sci. Adv.
4, eaar5809
10.1126/sciadv.aar5809 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
110. Holmes, C.R., Woollings, T., Hawkins, E. and De Vries, H. (2016) Robust future changes in temperature variability under greenhouse gas forcing and the relationship with thermal advection. J. Clim.
29, 2221–2236
10.1175/JCLI-D-14-00735.1 [CrossRef] [Google Scholar]
111. Meehl, G.A. and Tebaldi, C. (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science
305, 994–997
10.1126/science.1098704 [PubMed] [CrossRef] [Google Scholar]
112. Vautard, R., van Aalst, M., Boucher, O., Drouin, A., Haustein, K., Kreienkamp, F.et al. (2020) Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe. Environ. Res. Lett.
15, 094077
10.1088/1748-9326/aba3d4 [CrossRef] [Google Scholar]
113. Robinson, P.J. (2001) On the definition of a heat wave. J. Appl. Meteorol. Climatol.
40, 762–775
10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2 [CrossRef] [PubMed] [CrossRef] [Google Scholar]
115. Brás, T.A., Seixas, J., Carvalhais, N. and Jägermeyr, J. (2021) Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett.
16, 065012
10.1088/1748-9326/abf004 [CrossRef] [Google Scholar]
116. Yuan, W., Cai, W., Chen, Y., Liu, S., Dong, W., Zhang, H.et al. (2016) Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Sci. Rep.
6, 18813
10.1038/srep18813 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
117. Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L.et al. (2020) Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv.
6, eaba2724
10.1126/sciadv.aba2724 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
118. Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V.et al. (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature
437, 529–533
10.1038/nature03972 [PubMed] [CrossRef] [Google Scholar]
119. Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M.D., Seneviratne, S.I.et al. (2013) Climate extremes and the carbon cycle. Nature
500, 287–295
10.1038/nature12350 [PubMed] [CrossRef] [Google Scholar]
120. Breshears, D.D., Fontaine, J.B., Ruthrof, K.X., Field, J.P., Feng, X., Burger, J.R.et al. (2021) Underappreciated plant vulnerabilities to heat waves. New Phytol.
231, 32–39
10.1111/nph.17348 [PubMed] [CrossRef] [Google Scholar]
121. Ortiz-Bobea, A., Wang, H., Carrillo, C.M. and Ault, T.R. (2019) Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett.
14, 064003
10.1088/1748-9326/ab1e75 [CrossRef] [Google Scholar]
122. Siebers, M.H., Slattery, R.A., Yendrek, C.R., Locke, A.M., Drag, D., Ainsworth, E.A.et al. (2017) Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agric. Ecosyst. Environ.
240, 162–170
10.1016/j.agee.2016.11.008 [CrossRef] [Google Scholar]
123. Siebers, M.H., Yendrek, C.R., Drag, D., Locke, A.M., Rios Acosta, L., Leakey, A.D.et al. (2015) Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress. Glob. Chang. Biol.
21, 3114–3125
10.1111/gcb.12935 [PubMed] [CrossRef] [Google Scholar]
124. Lobell, D.B., Bänziger, M., Magorokosho, C. and Vivek, B. (2011) Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang.
1, 42–45
10.1038/nclimate1043 [CrossRef] [Google Scholar]
125. Ray, D.K., Gerber, J.S., MacDonald, G.K. and West, P.C. (2015) Climate variation explains a third of global crop yield variability. Nat. Commun.
6, 5989
10.1038/ncomms6989 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
126. Schlenker, W. and Roberts, M.J. (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. U.S.A.
106, 15594–15598
10.1073/pnas.0906865106 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
127. Macabuhay, A., Houshmandfar, A., Nuttall, J., Fitzgerald, G.J., Tausz, M. and Tausz-Posch, S. (2018) Can elevated CO2 buffer the effects of heat waves on wheat in a dryland cropping system?
Environ. Exp. Bot.
155, 578–588
10.1016/j.envexpbot.2018.07.029 [CrossRef] [Google Scholar]
128. Bourgault, M., Löw, M., Tausz-Posch, S., Nuttall, J., Delahunty, A., Brand, J.et al. (2018) Effect of a heat wave on lentil grown under free-air CO2 enrichment (FACE) in a semi-arid environment. Crop Sci.
58, 803–812
10.2135/cropsci2017.09.0565 [CrossRef] [Google Scholar]
129. Thomey, M.L., Slattery, R.A., Köhler, I.H., Bernacchi, C.J. and Ort, D.R. (2019) Yield response of field-grown soybean exposed to heat waves under current and elevated [CO2]. Glob. Chang. Biol.
25, 4352–4368
10.1111/gcb.14796 [PubMed] [CrossRef] [Google Scholar]
130. Leakey, A.D., Ainsworth, E.A., Bernacchi, C.J., Rogers, A., Long, S.P. and Ort, D.R. (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot.
60, 2859–2876
10.1093/jxb/erp096 [PubMed] [CrossRef] [Google Scholar]
131. Dai, A., Zhao, T. and Chen, J. (2018) Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Chang. Rep.
4, 301–312
10.1007/s40641-018-0101-6 [CrossRef] [Google Scholar]
132. Ficklin, D.L. and Novick, K.A. (2017) Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. Atmos.
122, 2061–2079
10.1002/2016JD025855 [CrossRef] [Google Scholar]
133. Wang, K., Dickinson, R.E. and Liang, S. (2012) Global atmospheric evaporative demand over land from 1973 to 2008. J. Clim.
25, 8353–8361
10.1175/jcli-d-11-00492.1 [CrossRef] [Google Scholar]
134. Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y.et al. (2019) Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv.
5, eaax1396
10.1126/sciadv.aax1396 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
135. Hatfield, J.L. and Prueger, J.H. (2015) Temperature extremes: effect on plant growth and development. Weather Clim. Extremes
10, 4–10
10.1016/j.wace.2015.08.001 [CrossRef] [Google Scholar]
136. Zandalinas, S.I. and Mittler, R. (2022) Plant responses to multifactorial stress combination. New Phytol.
234, 1161–1167
10.1111/nph.18087 [PubMed] [CrossRef] [Google Scholar]
137. Ball, J.T., Woodrow, I.E. and Berry, J.A. (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, U.S.A., August 10–15, 1986, pp. 221–224, Springer;
10.1007/978-94-017-0519-6 [CrossRef] [Google Scholar]
138. Long, S.P. and Bernacchi, C. (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J. Exp. Bot.
54, 2393–2401
10.1093/jxb/erg262 [PubMed] [CrossRef] [Google Scholar]
139. Lobell, D.B., Hammer, G.L., McLean, G., Messina, C., Roberts, M.J. and Schlenker, W. (2013) The critical role of extreme heat for maize production in the United States. Nat. Clim. Change
3, 497–501
10.1038/nclimate1832 [CrossRef] [Google Scholar]
140. Lobell, D.B., Roberts, M.J., Schlenker, W., Braun, N., Little, B.B., Rejesus, R.M.et al. (2014) Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science
344, 516–519
10.1126/science.1251423 [PubMed] [CrossRef] [Google Scholar]
141. Ort, D.R. and Long, S.P. (2014) Limits on yields in the corn belt. Science
344, 484–485
10.1126/science.1253884 [PubMed] [CrossRef] [Google Scholar]
142. Kupper, P., Sõber, J., Sellin, A., Lõhmus, K., Tullus, A., Räim, O.et al. (2011) An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environ. Exp. Bot.
72, 432–438
10.1016/j.envexpbot.2010.09.003 [CrossRef] [Google Scholar]
143. Ort, D.R., Merchant, S.S., Alric, J., Barkan, A., Blankenship, R.E., Bock, R.et al. (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl Acad. Sci. U.S.A.
112, 8529–8536
10.1073/pnas.1424031112 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
144. Slattery, R.A. and Ort, D.R. (2019) Carbon assimilation in crops at high temperatures. Plant Cell Environ.
42, 2750–2758
10.1111/pce.13572 [PubMed] [CrossRef] [Google Scholar]
145. Moore, C.E., Meacham-Hensold, K., Lemonnier, P., Slattery, R.A., Benjamin, C., Bernacchi, C.J.et al. (2021) The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot.
72, 2822–2844
10.1093/jxb/erab090 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
146. Ainsworth, E.A. and Ort, D.R. (2010) How do we improve crop production in a warming world?
Plant Physiol.
154, 526–530
10.1104/pp.110.161349 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
147. Walker, B.J., VanLoocke, A., Bernacchi, C.J. and Ort, D.R. (2016) The costs of photorespiration to food production now and in the future. Annu. Rev. Plant Biol.
67, 107–129
10.1146/annurev-arplant-043015-111709 [PubMed] [CrossRef] [Google Scholar]
148. Kebeish, R., Niessen, M., Thiruveedhi, K., Bari, R., Hirsch, H.-J., Rosenkranz, R.et al. (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat. Biotechnol.
25, 593–599
10.1038/nbt1299 [PubMed] [CrossRef] [Google Scholar]
149. Maurino, V.G. and Peterhansel, C. (2010) Photorespiration: current status and approaches for metabolic engineering. Curr. Opin. Plant Biol.
13, 248–255
10.1016/j.pbi.2010.01.006 [PubMed] [CrossRef] [Google Scholar]
150. South, P.F., Cavanagh, A.P., Liu, H.W. and Ort, D.R. (2019) Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science
363, aat9077
10.1126/science.aat9077 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
151. Cavanagh, A.P., South, P.F., Bernacchi, C.J. and Ort, D.R. (2022) Alternative pathway to photorespiration protects growth and productivity at elevated temperatures in a model crop. Plant Biotechnol. J.
20, 711–721
10.1111/pbi.13750 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
152. Timm, S., Florian, A., Arrivault, S., Stitt, M., Fernie, A.R. and Bauwe, H. (2012) Glycine decarboxylase controls photosynthesis and plant growth. FEBS Lett.
586, 3692–3697
10.1016/j.febslet.2012.08.027 [PubMed] [CrossRef] [Google Scholar]
153. López-Calcagno, P.E., Fisk, S., Brown, K.L., Bull, S.E., South, P.F. and Raines, C.A. (2019) Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse and field-grown transgenic tobacco plants. Plant Biotechnol. J.
17, 141–151
10.1111/pbi.12953 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
154. Bernacchi, C., Calfapietra, C., Davey, P., Wittig, V., Scarascia-Mugnozza, G., Raines, C.et al. (2003) Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytol.
159, 609–621
10.1046/j.1469-8137.2003.00850.x [PubMed] [CrossRef] [Google Scholar]
155. June, T., Evans, J.R. and Farquhar, G.D. (2004) A simple new equation for the reversible temperature dependence of photosynthetic electron transport: a study on soybean leaf. Funct. Plant Biol.
31, 275–283
10.1071/FP03250 [PubMed] [CrossRef] [Google Scholar]
156. Ainsworth, E.A. and Rogers, A. (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ.
30, 258–270
10.1111/j.1365-3040.2007.01641.x [PubMed] [CrossRef] [Google Scholar]
157. Zhu, X.-G., De Sturler, E. and Long, S.P. (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol.
145, 513–526
10.1104/pp.107.103713 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
158. Harrison, E.P., Willingham, N.M., Lloyd, J.C. and Raines, C.A. (1997) Reduced sedoheptulose-1, 7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta
204, 27–36
10.1007/s004250050226 [CrossRef] [Google Scholar]
159. Lefebvre, S., Lawson, T., Fryer, M., Zakhleniuk, O.V., Lloyd, J.C. and Raines, C.A. (2005) Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol.
138, 451–460
10.1104/pp.104.055046 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
160. Feng, L., Wang, K., Li, Y., Tan, Y., Kong, J., Li, H.et al. (2007) Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep.
26, 1635–1646
10.1007/s00299-006-0299-y [PubMed] [CrossRef] [Google Scholar]
161. Crafts-Brandner, S.J. and Salvucci, M.E. (2000) Rubisco Activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc. Natl Acad. Sci. U.S.A.
97, 13430–13435
10.1073/pnas.230451497 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
162. Kurek, I., Chang, T.K., Bertain, S.M., Madrigal, A., Liu, L., Lassner, M.W.et al. (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell
19, 3230–3241
10.1105/tpc.107.054171 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
163. Scafaro, A.P., Bautsoens, N., den Boer, B., Van Rie, J. and Gallé, A. (2019) A conserved sequence from heat-adapted species improves Rubisco activase thermostability in wheat. Plant Physiol.
181, 43–54
10.1104/pp.19.00425 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
164. Scafaro, A.P., De Vleesschauwer, D., Bautsoens, N., Hannah, M.A., den Boer, B., Gallé, A.et al. (2019) A single point mutation in the C-terminal extension of wheat Rubisco activase dramatically reduces ADP inhibition via enhanced ATP binding affinity. J. Biol. Chem.
294, 17931–17940
10.1074/jbc.RA119.010684 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
165. Degen, G.E., Worrall, D. and Carmo-Silva, E. (2020) An isoleucine residue acts as a thermal and regulatory switch in wheat Rubisco activase. Plant J.
103, 742–751
10.1111/tpj.14766 [PubMed] [CrossRef] [Google Scholar]
166. Kumagai, E., Burroughs, C.H., Pederson, T.L., Montes, C.M., Peng, B., Kimm, H.et al. (2022) Predicting biochemical acclimation of leaf photosynthesis in soybean under in-field canopy warming using hyperspectral reflectance. Plant Cell Environ.
45, 80–94
10.1111/pce.14204 [PubMed] [CrossRef] [Google Scholar]
167. Kimm, H., Guan, K., Burroughs, C.H., Peng, B., Ainsworth, E.A., Bernacchi, C.J.et al. (2021) Quantifying high-temperature stress on soybean canopy photosynthesis: the unique role of sun-induced chlorophyll fluorescence. Glob. Chang. Biol.
27, 2403–2415
10.1111/gcb.15603 [PubMed] [CrossRef] [Googl