For more than a century, utility companies have used electromechanical relays to protect power systems against damage that might occur during severe weather, accidents, and other abnormal conditions. But the relays could neither locate the faults nor accurately record what happened.
Then, in 1977, Edmund O. Schweitzer III invented the digital microprocessor-based relay as part of his doctoral thesis. Schweitzer’s relay, which could locate a fault within the radius of 1 kilometer, set new standards for utility reliability, safety, and efficiency.
Edmund O. Schweitzer III
Employer:
Schweitzer Engineering Laboratories
Title:
President and CTO
Member grade:
Life Fellow
Alma maters:
Purdue University, West Lafayette, Ind.; Washington State University, Pullman
To develop and manufacture his relay, he launched Schweitzer Engineering Laboratories in 1982 from his basement in Pullman, Wash. Today SEL manufactures hundreds of products that protect, monitor, control, and automate electric power systems in more than 165 countries.
Schweitzer, an IEEE Life Fellow, is his company’s president and chief technology officer. He started SEL with seven workers; it now has more than 6,000.
The 40-year-old employee-owned company continues to grow. It has four manufacturing facilities in the United States. Its newest one, which opened in March in Moscow, Idaho, fabricates printed circuit boards.
Schweitzer has received many accolades for his work, including the 2012 IEEE Medal in Power Engineering. In 2019 he was inducted into the U.S. National Inventors Hall of Fame.
Advances in power electronics
Power system faults can happen when a tree or vehicle hits a power line, a grid operator makes a mistake, or equipment fails. The fault shunts extra current to some parts of the circuit, shorting it out.
If there is no proper scheme or device installed with the aim of protecting the equipment and ensuring continuity of the power supply, an outage or blackout could propagate throughout the grid.
Overcurrent is not the only damage that can occur, though. Faults also can change voltages, frequencies, and the direction of current.
A protection scheme should quickly isolate the fault from the rest of the grid, thus limiting damage on the spot and preventing the fault from spreading to the rest of the system. To do that, protection devices must be installed.
That’s where Schweitzer’s digital microprocessor-based relay comes in. He perfected it in 1982. It later was commercialized and sold as the SEL-21 digital distance relay/fault locator.
Inspired by a blackout and a protective relays book
Schweitzer says his relay was, in part, inspired by an event that took place during his first year of college.
“Back in 19